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ABSTRACT
Stationary stable processes that are Fourier transforms of
symmetric stable independent increments processes are shown to have

a.s. finite conditional expectation of Xt given Xs and conditional

variance of X given X .. X . The associated conditional

expectation predictors are nonlinear in {XS, s<{t} but are mixtures

of predictors of the usual type based on the Gaussian model.
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INTRODUCT ION

The work presented here is part of a program extending the
classical theories of prediction, detection, and smoothing of
signals to encompass models in which Gaussian noise is replaced by
symmetric a-stable (SaS) noise, where 0 < a { 2 is the index of
stability. This is consistent with the full implications of the
theory of errors (Levy, 1925) and includes Gaussian noise as the
case a = 2.

It is important to realise that Gaussian noise (a = 2) results

in the frequency domain models being identical with the time domain

models, by Bochner's Theorem (Doob, 1953). But the same is not true

for a¢ < 2. That is, with the notable exception of a = 2, the class
FT-SaS of processes which are Fourier transforms of SaS noise (e.g.
wave motions) will not be the same as the class of processes that
are the outputs of linear systems, such as ARMA models, driven by
SaS noise (Cline and Brockwell, 1985), (Makagon and Mandrekar,
1987).

Substantial progress has been made on the prediction problem
for processes of the FT-SaS type, i.e. stationary processes Xt =
S eitk Z{d\) where Z is an independent increments SaS process. In

the course of this work a number of basic methods have been
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developed which also have application to processes of the latter
type, including ARMA models.

To understand the basic approach of this paper it is important
to know that 2n i.i.d. SaS random vectors tend to separate out like
+ j_l/a. 1 ¢ j ¢ n (LePage, Woodroofe, and Zinn, 1981), and are in
general representable as mixtures of Gaussian distributions with
differing covariances (LePage, 1980, appended to this report). This
allows us to think of i.i.d. stable noise as inhomogenous Gaussian
noise with random a/2 stable covariances. As might be inferred from
remarks made above, the consequences of this inhomogeneity when
noise is in the form of wave amplitudes differ greatly from the
effects of noise entering in the form of terms driving difference
equations.

In recent work (Makagon and Mandrekar, 1987) there is defined
the concept of a generalized spectrum for any strictly stationary
stable process. In case the spectrum is given by independently
scattered measure, as above, they have shown that one can obtain the
linear analysis of such signals by methods analagous to those used
for Gaussian processes. This extends (Cambanis and Soltani, 1982)
to the case a { 1 by a more general method.

However, linear prediction is not in general as good as

conditional expectation prediction. The latter has not been much




o studied for stable processes because of the fact that E |Xt| is
P
A infinite for @ ¢ 1. Surprisingly, by exploiting (LePage, 1980) we

will prove for FT-SaS processes (Xt} that for every a the conditonal

-
-

by

)

& expectations E(|Xt| | Xs) and E(X% [ xt—é' Xt—26) are almost surely
b

'... -

"t finite. This is surprising in view of the fact that for a ¢ 1 the
‘: expectations E IXtI are infinite, and for all a { 2 the expectations
- 2

. E Xt are infinite.

A As a consequence of these conditional moments existing, the

. conditional expectation predictor of Xt. regardless of the number of

predicting variables, is well-defined and optimal for conditional

;: .

2 mean squared error, provided the predicting variables include two

-I

o time points of the form t-6, t-26 for some 6#0. By combining these
M results with (Cambanis and LePage 1987) it can be shown that for

N

D a < 2 the conditional expectation predictor E(Xt | xt—&' 60§6§L) is
)

asymptotically consistent for Xt as 6§ » 0 (excluding O in the

f

{ discrete case) and L =+ @, whereas the linear predictor is not.
o

o*

- Since the above conditional expectations turn out to be
P a-posteriori averages of Gaussian conditonal expectations computed
Y

~

-~ for various covariances, these non-linear conditional expectation

n

; predictors are a smoothing of Hilbert space methods and are in fact
>

:- Bayesian predictors for a naturally occurring a-priori distribution
.

3 intrinsic to FT-SaS processes.
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The new methods generally allow us to compute quantities

previously thought to be undefined because stable r.v. lack certain
moments. For example, the identity E(Xt | Xs) = Xs E cos(A(t-s)).
where A is a random sample from the normalized spectral distribution
function was known for 1 < a { 2 (Kanter and Steiger, 1974).
Corollary 2.1.2 below proves this result for O < a { 2 by a totally
new direct calculation which does not require existence of the
unconditional expectation and bypasses differentiation of the
characteristic function altogether. Certain other conditional and
unconditional integrals can be directly calculated by the same
method, including the integer moments of the characteristic function
of the processs conditioned on the invariant sigma algebra (Cambanis
and LePage., 1987).

As mentioned previously, this work is based on a representation
of FT-SaS processes as mixtures of stationary Gaussian processes
(with randomly chosen covariance function 6) due to (LePage, 1980).
The new observation, specialized to the case 3 = a{X_l. XO) and X =
Xl. is that the conditional density of (Xl. XO), given the sigma
field generated by the covariance function 6, cancels terms in the

conditional expected squared error of prediction. This forces

convergence of the conditional expectation Eg(X—EyX)z. Such

integrals, including EgX. are computed as mixtures, on 8, of
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8-specific Gaussian integrals. The indicated predictors are thus
conditional mixtures of O-specific Gaussian linear predictors.
STABLE PROCESSES

The log characteristic function of any stationary Gaussian

random functions having a continuous covariance takes the form

log E exp i 3_r X = ~(6°/2) E|_ r, exp itkA1|2. (1.1)

k

where 02 > 0 and A1 is a random variable whose probability
distribution function is the normalized spectral distribution
function. Stable analogues of these laws may be obtained by
replacing the exponent 2 in (1.1) by a number a in the range 0<a<2.
In (LePage. 1980) it was proved that the resulting characteristic
functions are precisely those of the class of FT-SaS processes. The

following construction for such processes was given. For each 0<a<2

define r.v. {X(t). teR} by

-1/a

o0
X =73, At +0)YT } 1.2
J=lc°S( J J) Jd ( )

t
In (1.2). which converges a.s. for each t, the sequence of r.v. {Aj}
{(which we denote by A for brevity) are i.i.d. from any distribution
on R; ® are i.i.d. uniformly distributed on the interval [-w,7]: Y
are i.1.d. with ElYlla finite; I are the consecutive arrival times
of a homogeneous Poisson process with unit intensity function on the

time domain R+; and the sequences of r.v. A, &, Y, I are mutually

independent.
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From (LePage, 1980, Theorem 7.4) the series (1.2) converges
almost surely for each teR and 0<a<2, and the r.v. defined by the
left side of (1.2) have log characteristic function

2 %B(a)C(a) E|Y1|a E|z§=1 rk exp itkAlla. (1.3)

where B(a) = a f (cos(r)-1) 1 . and C(a) = It; |1+ein|adn.

+a

From (1.3) it may be seen that the law of X depends on the law
of YI only through the a-th absolute moment. Taking {Yj} to be
Rayleigh distributed, equivalent to letting {Yj} be complex Gaussian
and taking the real part of {X(t). teR}, yields a process X which is
conditionally Gaussian and stationary given the sequences A, I'. The
process given by the infinite series (1.1) may be written

X =1 © Z(dn). (1.4)

t IRe

where Z is, conditionally on A, I', a Gaussian orthogonal random set

function supported on the sequence of frequencies A and -A, with

Z({-A}) = Z({A,}) and Z({A;}) given by

- (2) zj O jl’“Y (1(A j=A et ® 4 1(—AJ=Ak)e“‘91), k1. (1.5)

From (1.2) or (1.5) it is seen that the conditional covariance

function of X given A, I', is given by

-2/a
8(t) = EJ lrj cos(Ajt)/2‘ teR. (1.6)

That is, {X(t). teR is conditionally Gaussian and stationary with

covariance (1.6) given A, T.
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2. EXISTENCE OF CONDITIONAL MOMENTS

We require the formula Eyn = [m(d6|%) Egn. where 71 is a

non-negative polynomial in the coordinate r.v. of the random

function X, % is the o-field generated by a finite number of the

coordinate r.v., Egn is the Ee—conditional expectation given ¥, and

w(delg) is the regular conditional probability distribution of the

finite number of coordinate values of 6 which appear in Een. A

proof may be given by martingale methods from the corresponding

result for the discrete case which is P(A|D) = Ee P(6AD)/P(D) = 26

P(6|D) Pe(AlD).

Let X be a random function which is a mixture of

Theorem 2.1.

zero-mean Gaussian stationary processes. For real numbers s,t the

’ s > 3 g 3 . k)
conditional expectation E IXtI is almost surely finite, where ¥ is a

o-algebra with respect to which Xs is measurable.

X
Proof. It is enough to prove that E 0|X1| is finite a.s. If 6(0)

O, then X. = X, = O almost surely. For each fixed 8 with 6(0)>0,

0

1

the conditional distribution of X1 given XO is normal with mean

‘ Xy \
u(6.0.1) = Ee X1 = (9(1)/6(0))XO. and variance 07(6.0.1) =

8(0)(1-(68(1)/8(0))%). Then.

%o %o
ETIX(| = £ 50y50) Bg 1%, 1 T(d81X0)

< J(a(0)>0y (IH(8.0.1)}[ + 0(8.0.1)) m(d6[Xy).

..........

= -'.n '.. .-§ o “- ‘I-' R A R R A AT SRR S e )
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Since [6(1)| <|6(0)| a.s., the pu-term of (2.2) is a.s. finitely

integrable. Now use v(dB|X0) = v(dG)w(XOIG)w(X , where w(r|8) =

o)

-1/72 -1/2

6 (0) exp(—r2/29(0)), from which it is seen that the

(2m)
o-term of (2.2) is also a.s. finitely integrable. O

Corollary 2.1.1. If J is a sigma algebra generated by a subset of

the random variables {X(t). teR}, then E'X, = J w(d68|%) E3X,. which

is a mixture of the O-specific Gaussian best linear predictors of X1

X

. 0 .
based on . In particular, E ~ X, = E(B(l)/G(O)IXO) Xy = (f(9(0)>0)

v(d6|Xo)(9(1)/6(0)) Xy- 0
Corollary 2.1.2. (Cambanis-LePage). For a process of the form (1.2)
with 0<a<2, E(G(l)/B(O)lXO) = E cos(4,).

Proof. The case a=2 is obvious. For a < 2, from (1.2) and (1.6)

2

o -1/
XO = Ej=1 cos(ej) Fj

o -2/a ©
6(1)/6(0) = Ej=1rj cos(kj)/zj=1 r

~2/a
Since A, 6, T are independent and XO is measurable o{6.T},

Xo Xo
E = (6(1)/8(0)) = E ~ E(8(1)s6(0)|8.T)

© _-2/a © -9/a
S Ty T Ecos(A)/3 T

E ('os(Al). 8]

Since no special role is played by times zero and one, the formula

E[(8(t)78(0)|X(s)] = E cos(Al(t-s)) follows at once. This result

extends (Kanter and Steiger, 1974) to the case a ¢ 1.
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Proposition 1. There exist FT-SaS processes for which the

Xo Xo, \2
conditional mean squared error E (XI_E Xl) is infinite.

X
Proof. Let H(X,) = [ (8(1)/6(0)) n(d6|X,). That is, E O X, = H(X,)

XO. Then
XO XO 2 0 6 /6 2 46 lx
E(X-E X)) = I(9(0)>0) (0) (1-(8(1)/6(0))™) =( o)
* T6(0)>0) Xg (H(Xo)~(9(1)/e(o)))2 m(d9[X) . (2.3)

The second term on the right of (2.3) is integrable. The first term
on the right may be handled using

w(delxo) = w(xole) m(d8)/m(X,)

2
-x2/26(0
= (200(0)) 2 e © ) w(d0)/m(X,). (2.4)

From (1.6) it is seen that 6(0) possesses a stable distribution of
index a/2 under w(d6). Taking A1 with support in the two point set
{-w/2, w/2} ensures 8(1)=0 a.s., in which case the integrand of

~(a+1)/2 at infinity.

(2.3) is, by (2.4). asymptotically of order r
This fails to be integrable if afl. 0O

On the other hand, the conditional expected squared error of
prediction given ¥ = a{X_l. Xo} is a.s. finite.
Theorem 2.2. Let X be a random function of the form (1.2). For
real numbers r,s,t with |r-s| = |t-s| the conditional expectation

Ey(Xt—Ey Xt)2 is almost surely finite if ¥ is a o-algebra with

respect to which Xr and Xs are measurable.
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£ 1

Proof. Replace w(d6[X,) by m(d6|X_,.X,) = n(d6|%) in (2.3), and %
b d
denote by p the correlation p = 8(1)/6(0). Then, ::
-1,~1 2,-1
w(d6|%F) ¢ (w(d0)/m(X_,. Xp))(2r) "6 T (0)(1-p7) . (2.5) B
S
From theorem 2.1, N
BN
E'x2(1) = f =(d8|%) X 4
e
F 3, \2 3, \2 -’
= [ w(d8|%) [Eg(X,-EgX,)“ + (EgX,)“] (2.6) 3
The first term in the brackets of (2.6) is less than or equal to if
6(0) (1—p2). and is therefore w(d8)-integrable when multiplied by e
the Jacobian from (2.5). The second term in the brackets of (2.6) 1?
2 .
may, on (p"#1) be written K
8(2) - pb 2 =)
(o %o + 2L =08() (x - px)12. (2.7) R
8(0) (1-p%)
The first component in (2.7) is p XO whose square is integrable by ;;
w((d8|%). It is therefore enough to bound gﬁ
Y
- "
D(6) = [9(21 28(1) ] (2.8) o4
8(0) (1-p°) %!
Let || [| denote L2 norm with respect to the zero-mean stationary A,
Gaussian process with covariance function 6. Then :lﬁ
2 2 . 2 P
00) = 1%, 1% 2 [1exy[12 + [In(8) (X_ -p¥y) 1] =
2 2 2 AR
= p~6(0) + D7(8) 6(0) (1-p°). R
2 2 2 Mg
Therefore D”(68) < 1 on p“%l1. But on p =1 (2.7) is replaced by XO' A
i
Thus (2.5) is a.s. finite. Note that the Cauchy~Schwartz bound on ] si
(2.8) is inadequate. O :ti
=

3. FUTURE DIRECTIONS

12




The ergodic properties of {Xt) are now completely understood.
In (Cambanis and LePage, 1987), subject to mild conditions on the
spectral distribution, a complete characterization of the invariant
sigma field of the process {Xt} is obtained in terms of amplitude
and frequency variables measurable with respect to the remote past.
The non-ergodic component is identified with i.i.d. uniformly
distributed phase variables.

Using the above results, it follows that under rather weak
conditions the predictors E(Xt [ xt—&' 60§6$L) converge almost
surely to Xt (and conditionally in mean square given the random
spectral amplitudes) as L —» =, 604 0. Thus, the action of SaS noise
in wave amplitudes is to make prediction ultimately more perfect
than would be the case for Gaussian noise. Since by a result of
(Makagon and Mandrekar, 1987) linear prediction optimized for the
given FT SaS distribution is only consistent for Xt under very
exceptional conditions on the spectral measure, it follows that
linear prediction is inferior to conditional expectation prediction
for a < 2. Such results generalize easily to the multiparameter and
dim >1 cases, and will apply to certain types of spatial processes
which are Fourier transforms.

By contrast with the above, linear prediction for linear system

SaS processes, such as ARMA(p.q) models driven by i.i.d. SaS random

13
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v

vectors, is intrinsically interesting due to the way in which the

noise enters additively. The conditional expectations E(Ith | XS. X

s < t) are a.s. infinite except in trivial cases due to E(|€t| I Xs. B

s (t) ==, i.e. the conditional expectation of the independent :f
s

error. By Theorem 2.1 it follows that such processes cannot be of

the FT SaS type.

If it can be proved that E(Ierl | XS. s (t) {(wa.s, forallr

,-

< t, then an obvious choice for non-linear prediction will be to .
.

predict the value zero for €t and use the conditional expectation ':f
'

predictor on €r. r < t. This most promising approach is currently -

under study.
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1. Introduction. o
Psieins Sl et -{\
Series decompositions, involving the arrival times of a Poisson t'
process, have been given by Ferguson and Klass [l] for the non-Gaussian .
Yy

. . : )

component of an arbitrary (real-valued) independent increments randon -~
function on the unit interval. LeP2ze and Woodroofe and Zinn [4] have G
.\.

. . ~ . . . . . . . ~
rediscovered a variant of this deconposition in conrection with their Co
o~
. Co v . . . - . '

study, via order statistics, of the limit distribution for self-normalized XX
sums (e.g. Students’'-t), when sampling from a distridution in thne demain =
of attraction of an arcitrarv stable Zaw of index : - . :2
The present paper obtains a characterization of sTarle laws ¢n ~

3 2 . . . . «

speces of dimension greater than one. This characteriration is formally )
like that of Ferguson-llass for dinension one, but with i.I.d. vector s
nultipliers on the Poisson terms. ~ne law of these coeflicients may be Ve
chosen proportional to the Lévy mezsure, although t-7ls iy not necessar-. °
These results take a rarticular!y elegant form in tne “a-~c 0f wrmimerres y
N

stable laws, wiere Looveriing of a4 fa.ctulus ir develrned STowing: .
Ca) wllol TEVT Teanure G-5001ates «Llhovector Coetfil ot orher Lnan :-:.
the aforemertioned ne,, (11, wWioal LA7ipens Shen Lnleper ot Lt st les are -
N

Pinhear! ~ortaned as L1 o CIARSRINEN Pl R O 3 [ Tusloan oart - =t

trars omulialimer LotaL g e iert — i Srement e GTle ael .
“

.\.
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function, and (iv) how to construct an arbitrary harmonizable stationary d

symmetric stable random function having multidimensional domain and/or

range. Symmetric stable laws are shown to be mixtures of Gaussian laws.

P

Partly because of the self-contained character of Kuelbs' paper

-

[3], in which the characterization of the log-characteristic function

of a stable law is extended to real separable Hilbert space, the
Hilbert space level of generality has been chosen for this paper. ~
Later extensions of Kuelbs' result to Banach and more general spaces

support a corresponding generalization of these results. In addition
to Kuelbs' result we need a method employed by Ferguson and Klass to -
transform certain dependent series into eventually identical indepen- tf
dent ones. We also require standard results giving conditions under -
which an independent series in Hilbert space converges almost surely
(e.g. [2], Theorem 5.3). The rest of the paper is basically self-

contained and affords a surprisingl: accessible and clear view of z < 2 .

stable laws, and randoz functions, pased on elementary series constructions. 4

Part II of this paper will generalize these results to the infinitely B

divisible case.

- -~




2. DNotationm.

The following symbols and conventions will be in force throughout

this paper.

(2.1) ~ "is asymptotic with"
4 " e
= equals by definition
D e : : : L
= has the same distribution as
> "converges in distribution to"
o 0 <2< 2, an index of stability
{r.,; > 1} arrival times of a Poisson process
] with unit rate
H a real separable Hilbert space

The material of the next section is drawn from [5)

«
-
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[ }
3. Motivation.

Limit theorems are not *he subject of this paper. However, we
should not proceed without benefit of the following example, which
exposes some connections between « < 2 stable r.v. and the Poisson
process.

Let {s.,j > 1} be independent of the sequence I and i.i.d.

J

1
with P(el 1) P(El -1) 7

Think of G(x) = P(EX? > x) ¥x > 1, where X 1is a r.v. symmetrically

and define G(x) ¢ xqu, ¥x > 1.

distributed about zero. We will cons:truct particular r.v. X ""Xn’

1’
i.i.d. as X, whose normalized sums converge in distribution to the

symmetric stable law of index «. 7o do this, use the arrival times of a

-

Poisson process to generate uniform crder statistics, apply G * to these,

multiplv by rthe signs ¢, and permuze. As constructed, the norma2lizad

> ~ =1/

sums will actually converge almost strely to -1 Ejlj (see (3.1)
below), a series possessing the syr—etric stable law of index a.
. . o -1l/a
In fact, a direct proof of the stability of -1 E;;j follows
J

easily froi the observation that the arrival times of several (say

K > 1) independent unit rate Poisson processes (run simultaneously)
constitute K—l times the arrival tines of a unit rate Poisson process.
This argument works just as well for € replaced by any vector sequence
(provided the series converges) and suggests the multivariate extensions
of sections 4 and S.

For each n > 1 let < U denote the

‘ot S S

order statistics of i.i.d. random wvariables Ul,...,Un which are

.
wre o 8

P
P

.
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uniformly distributed on [0,1)}. Then for each fixed n > 1, letting

A -1
X. = E.G (U)y ¥j > ly
i3 7 T2

-1/a .n D -l/az .n -1
3.1 X =
(.1 " By &%= 153 ()’

o1/ . -1/2

[1e]

-1/ .n
n .

It is convenient to refer to Eij, j > 1 as the residual order statistics,
keeping in mind that the ordering is on decreasing absclute values.
The same example suggests an invariance principle (proved in [4])

1

converge in distribution to a limit law depending only on the stable

for self-normed sums such as t Xj JZ?Xi which, regardless of « ,

attracting X For the r.v. constructed above, ¥n > 1,

1°

1. Use T,
J

conditional on the sequence T.

2/a

" j and Z: i < @ a.s., and apply the 3-series thecren



mmmﬁmrrﬁrmmh

™ x I T e
1% 0 & a.s. 1 &4

(3.2)

[l
Lae BN
o] =}
Ll =]
|
(S
[\S]
~
§2
3
~ 8
~1
>
N
~
[

/z

That is, the limit law of the t—statiscicz' is that of the t-statistic
calculated on the residual order statistics (see also [6]).

Even the construction of stable independent-increments processes
can be motivated by means of the same example. We restrict our atten-
tion to the homogeneous increments case. Let [Tj,j > 1] D [Uj’j > 1],
and suppose the sequences T, €, I' are mutually independent. The

partial sum processes Zint] X,, 0<t<l, ¥n>1 can be effected by

J
independent selections of Xl""’xn into subsets of sizes [nt]l using

multiplication by indicators:

(n) L [nt]
(3.3) Il () = I(Tli " )
(), \ & [t} -2, Ign)(t)
= r 1< .
Ij (t) I(Tji g ), ¥1<3j<n
Then for each n > 1,
, -1/ .[nt] 1 D r-n (m) Ve 1/ 3
(3.4) {n Zl Xj, te[0,1]) = (L, Ij (t) Iy (.n+l/n) , te[0,1]
v a.s. in D[9,1]
[ -1/z N
{z) 1(T, < ©)=.7, /“‘, tef0,11s .
1 i~ i3
Details of this argument are unpublissed. I;}

2.
The square of this t-statistic is sizmply related to the square of
Students'-t, and both have the saze limit law. ';

--------------
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4. Stable Laws on H.

Suppose {Xj,j > 1} are i.i.d. random vectors in a real separable
Hilbert space H and that the sequences X, I are independent. For
each n > 1 denote by Kn the number of arrival times I in the

1

A -
interval [0,a ], a_ = b j 7. This choice of a is from [1]. 1Its
n n 1 n

advantages will be apparent in what follows.

Remark. Sums of the kind Zln are for each n > 1 defined to zero on

the event Kn==0, Use ( , ), ]}‘[, to denote H inner product and norz.
For each n > 1, xcH, ¢ > 0, (see also [1], pg. 1639),
K K
i(x,czl“x_r_‘l/o‘) K iel,"(x,x )1 /2
(4.1) Ee 33 = EE "e 33
-1 a 1c(x,hl)t 1/ K
= E(a / N ar) ©
T oJo

a_ ic(x,Xl)t-l/a
E “(e -1dt

= e

*® i, X )r
o 1 dr
Ec o j;a-l/a (e -1) T
- e n r

Kuelbs ({3], lemma 2.2) has proved that the log~characteristic
function of a (non-Gaussian) stable probability measure on H is

necessarily of the following form, for a unique Z:zH and finite

. R, .
+xcH Lxll= 1,

ne>

Borel measure O on S
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1+r2

(4.2) i(x,8) +f] (eix8dr o il s)ry dr , ¥xcE .

1+
T
It is convenient to refer to:
(4.3) expression (4.2) with B8=0.

Define § = G(S) u = 0/6, and

-]
sr _dr
. _— g(ds), ¥n > 1 .
1; ]; 1/a 6-1/& a;;/a l+r2 1+

Lemma 4.4 If (4.3) is the characteristic function of a stable law oz

H and if the sequence {Xj,j 2_1} is i.i.d. 4 and independent of zhe

sequence ' , define

X(n) A a-llasl/a

Then ¥xeH, E exp i(x,Xn) converges to (4.3).

Remark. This result is not altogether satisfactory since convergence ol
. (n) . . . N
the series {X'/, n > 1} is through stochastic times {Kn’ n> 1,

and is not yet a.s. in H. These defects are remedied in Theorem 4.8

below.

Proof. For each xeH, n > 1, by (4.1),

8
AR - “ o -~ A -' Ca e --' ‘ " ".. . q':: 4-:.-‘“:'... h : ‘-‘ :"- ".-
CORIAR A te, WA LS .J‘-‘\-'.‘\\ u"Ir ) *../- AR .-".'u_’. DA
® -")"f."*.""’-'."" % A » " . R a2
nC
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. (n) & i(x,X.)r
i(x, X)) . L o=s 71 d
(4.5) loge Ee = -1(x,8n) L 23 j;—l/aél/aa—l/a(e -1) =X
n

- i (ei(x,s)r_l__i(x,s)r) dr 6 (ds)
fsfa-l/,-:.l/aar:lla 1+r2 r1+ca

+

(4.3) O

From ([1], lemma 2), we conclude that

K .
[: oy s
K i3 -

are independent. Furthermore, using an argument drawn from [4], ¥®n > 1,

2

-2/ .,
< an E(I\n+l- n

- n+l % ?—l/a}
I\n J 3 |

(4.6) E

o

:

which is summable in n. Therefore,

K K

.t x T‘fl/a ~E Zl“ xj(rjfl/a A1)

1 373

converges in probability in H. A short calculation gives
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K o
@1 A e M%Me g (rJTl/‘*Al) - af _r__dr

a-l/aél/aar—ll/a 2 1_14'(1

l+r

3./

“l/agl/a f n,, -1l/a L/
=0 ((c Al) - ) dt
0 +a-2/a62/a t-2/a

+ finite limit 4 A(¢,8) as n -+ =

(n)

Therefore X converges in probability.
Theorem 4.8. If (4.3) is the log characteristic function of a stable

law on H then the series

t-l/a
2/&52/a -2/

_ hi
o~ Hagllasn ‘X T lla_(wx ) f
173 J

“3j=1 l+a

§

) dt}

converges a.s. in H to a randoxm vector with log characteristic

function (4.3).

Remark. Centering is not needed for the case a < 1, nor is it

needed for the symmetric case which will appear in [4].

Proof. Since X(n) converges in probability and X(n) is an inde~
pendent series, we conclude by ([2], Theorem 5.3(6)) that X(n)
converges a.s. in H. Recall that with probability one :3 finite

M such that (n > M)=¢>(:3 smallest N(n) with n = KN(n))' Then

¥n > n,
3. . . .
The first term equals the first term above. For the second term
_l'_ —r
use t =a 4r
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i /e ARCY
(4.9) @D 1/351/3{2? :-:J,?jl/“ -(zx)) (e Y3 yae

(EX.)A (2,2) + o(1)
1" n

Since for n2 M (m = My ™ Gyya1 < o Ay

a
N{(n) : a.s.
(4.10) { (t—l/a Al)de! < (N(n))'1 ~— 0.
r !

n

By the law of the iterated logarithxz, a.=s. eventually as n =+ «®

(1‘ 1 r’ 17/~ , . 17~
(4.11) N T S PP TS L N < T T

“n ‘'n

< 2/nloglogn (n + o(n)) /% =0
Therefore,
N -1/ « - AL .
(4.12) fFm) o ~lagl/oagen y ~=1/a ep y 10 (THE ) ae -
1 7373 1 .0

:‘x(:i,f) (E:‘j) +o(l) ,

which converges a.s. in H to a random vector with

log clharacteristic

function (4.3). O

Remark.

ifhe centerings used above also have an interpretaticn invclving

(EXl) E(Tgl/a’ 1), which will not be given here.

&
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5. Symmetric Case, Multiple Representations.

In this section we do not assuze that Xl is distributed according

TP P L\

to the measure L , or even restric: its distribution to §S. Suppose

X, €, T are mutually independent sequences, with ¢ , T as in section

3, and (X, 32 1) i.i.d. in H with EX 1% <o

.

Remark. Series of form 32 ijjffl/z will be termed syrmetric.

Lemma 5.1. The symmetric series I, EijT;l/a converges a.s. in Ry
H and the log characteristic function of its limit is E:(X,xl)iuﬂ(l), .
¥xc£ H, where B(a) & { wa(cos(r)-l) dr

> Jo e

Proof. The arguments needed are sizilar to those of theorem 4.8, but
easier in the symmetric case. For each x ¢ H,

¥
n -1/ : Lo
i(x,2, 2.2, 7, ) . re iz, (X)) r .
"’ 4. h n .
(5.2) loge Ee L] (.1 3.2) “1/= 1 T \
a, A\

(‘” iclr ‘ ’
! (e -1 (x,X,), < ra

' 1 — n
“0 ) r

re N
: (cos(r)-1) L E (x,~ 3,1

20 r

N

From ({3}, corollary 2.1), the lizit in (5.2) 1s the characteristic



Ll
-
-
‘: function of a (symmetric) stable law on K. Since the sums
. K
K
} ZKn+l£,X,T 1/a are independent and symmetric, we have ‘rom (!2],
‘: n 333 .
‘ kn =1/ .
' theorem 5.3(1l)) that :l Eijlj converzes a.s. in H. Since
1 -
| lude =7 X ~-1/z
' a.s. <K+l as n+ = we conclude I, € X 7.
. eventually a.s Koo 2K , 1 55%5
converges a.s. in H. 3
N Several series may represent the same stable law.
= Q&
Theorem 5.2. If LLth < o then for every x € H,
\
LY
; *a * . ;
. E!(x,Xl)Iu = E]leéil(x,xl)i where X, is distributed on S
3 according to the measure:
: IR}
. v
- * Xl s L
X P(X, € A) = EI(p— € A) —— -
: 1 el E X
¥ ' lll
Proof. For every x I H,
'
N X,
- , el S I §
), 7 = E (x, ——™ i ]
El(x) l)l ‘( ] ”}\1“ I}‘14
‘
y b A ol SR
‘ - B Ee)i® . o
- ’
As an exanple of the above, every symmerric stable law on H has
. . - -1/o .1/ .
: a construction I, Zj Xj Tj / /5(1211&) ® in terms of an independent
; sequence Z of i.i.d. standard normal r.v.. Conditional on the seguences
= ) I' and X the symmetric stable is Gaussian. That is, svmmetric stable
. laws are particular mixtures of Gaussian laws with zero means and differing
g covariance kernels. The latter
1

will not in general differ only by scale,

though this is necessarily true for ¥ = R
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6. Symmesric Stable Random Ser Functiuns
el
Let ftj. j > 1: be i.i.d. rakxing values in a Teasurable space -
with measurable sets generically dendted A. Suppese T, @, ¥ T -
are mutually independent, where the latter three seguences are as .n
section 5. Define
L. . -1/xa .
(6.1) X(a) ¥ I I(T ca)¥c , P4 . :
3 37373 N
$ . N . (‘U
Theorem 6.2. The serizs (6.1) is a.s. convergent for each A, is -
jointly symmetric stable for finitely many A at a tige, and :
X(Al) v e s X(An) are for each n > 1 mutually independent if
Al,...,An are mutua.lv disjoint.
Proof. For each n > 1, x¢H, real numbers ToveeenT o, and neasur- )
able sets Al,...,An, :j
,oan L . > -.n . . S N
1(x,_l r,a(Ak)) R r, (oA ), e T ;
K i= =1 "k { 3073 .
(6.3) log E e = log Ee ° ! A TR
e e
(5.1)
| o .n o ®
= 3(x)E (x,% ) "¢ r.1(x ¢ &) .
*1 =1 K 1 .\rl '

If Al,-.-,A are mutually disjoint then
n




Remark. The simplic.tr o7 this (.reirmultion o, intero.i.os, o 1w
way in which u-dependenie, dimens. il LIre ture, anl oot inal
depencence are identified with mutiall inderenlent Tt o leers

EC Uk S
sequences . X, .

’

Remark. Schilder (8] and Kuelbs [’ have explored a re;resentation

'y

multidimensional syt=meiric stable r.v. by means 0f a stu-hastic ins
with respect to a onz-dimensional s:iable independernt incremernts
Theorem (4.8) and lemma (5.1) sharpen and ertend suc: rerresentatio
by connecting them with the Ferguson-tlass representation, making

explicit the choice o7 coefficients required to obtain ea~h stabdle

4.

law ', and establishing H convergence of the indic.ied =eries.

3

Remarx. Suppose ¥ -1 and Y, = 1. o T 7701 - v gre
—_— 3 IO7RI RS - =

independently construzted (as per (5.1)) svometric sf:ible r.v

re

values in H. Then for an arbitrarv choice of real numbers r

= . y N O U T .
the sum . r Y is representable .. 1. ., where -7 3 -1
1 "kk 1 73173 ; -
D L
are i.i.d. and &, = an equiprobable random selection ‘rom K

"1
Ala_ . . N , Cen
...,k r % .. This uses the property (discussed in cectirsn 3) ¢
n’nl .

re,

Poisson processes run zimultaneousl-..

Including the nor-sommetric stable lawe.
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1onarv Stmmetric Stable Random Tunction

S.

fasicaily, we seek to construct the stable analogues of Gaussizn

statisnary randoz funcriions havirng a harmoni:z decomposition.

characteristic function of such a

. 2
| a 1)

where t 1is generic for a point of the domain, and (*l, )
o
a random linear function on the domain. The stable analogues

these Gaussian randoz functions have characteristic functions
th

emplov an & -power in this integral instead of the 2, but

otherwise the same. Define ¥t,
- L= - ~=1/a
(7.1 Y(t) = 7. cos((' ,t) + - )X = T, ,
1 IR TS R R
where are i.i.d., 7 are i.i.d. uniforms on [-7

are as in section 6, and A, = c

sequences. The series (7.1) is a.s. convergent in H

by lemma 5.1. The random function

X( )

~

because < are uniform on

(-7,77,

The

is

that

are

for each t

is clearly stationary

but this will also be a simple

consequence of the form of the characteristic function which we now

compute.
1(/\,» = r X(t )/
(7.2) log E e k=l kK
e
.® --0
Poegelt k=l Ty

5. s ! cy Y ~n
= B(J)E,(x.hl), E

16

Se=1 Tk COS((“l’tko

) +2

1

Jaussian random functioa involves

are mutuallv incdependent

),

a

NSCTEIRROR Y
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e

The final term in the right side of (7.2) reduces as Zfollows, with S

i(f ,t
L on ( 1’ k)o
z = Zl T. e ,

i0 -i0

N T -0, 1 - lia

(7.3 E|Z, r, cos(({A,,t +3 = E2 7 ze + z
) EIE] r cos((h .t ) +3)), | e

i

e
&,z -1- T, “d

= Bz 278 1+2 “ze e

NI R o

= Ejz{ 2 TC(%)
s
o4

where o
T
i in.a a8 iv~2in @ ':

C(x) = | l+e” “dn= l4+e 7 "7 adn

j-— - LA
r:.‘
o
for all real 4. Ve have therefcre proved, :.“:\(.
.~:,.~

Theorem 7.4. The random function deined by (7.1) converges a.s. in
H for each t, and has log characteristic function _;-:
i(Ay,t,) o
- n 1’ ko x ®
2 B(;)C(Q)E:Z r. e | ‘"
k=1 =« "\':
..\'-
W
e
for all n > 1, rl,...,rn. tl,...,tn - O O
Corollarv 7.5. The random function (7.1) is non-ergodic for each x> < 2. '-':::ﬁ
t-.l..
'-\-
Proof. By using (7.2) the constructizn (7.1) remains valid if 2. are S
Y

<

/ <! ray 1/ . . v

replaced bv Zj (£.2,.7) . 121, where Z 1is an independent i.i.c.

P - -

(YRS

standard normal sequence. Conditicnal on the sequences A, X, T, the ::’.-'.
.

LN
A

Y
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stationary Ca:ssian with discrete spectrum
a.s..

a.s.

is
therefore conditionally non-ergodic

process (7.1)




8. Operator Stable and Infinitely Divisible Multidimensional Laws.

Woae et

Infinitely divisible laws, of which the operator stable laws are a

special case with particularly intereszing structure, are treated in

Part II. 1In brief, this is what happens: A construction of infinitely

’ divisible random vectors is given by Z{XjH(Tj,Xj)—Yj}, in which the real

function H is monotone decreasing and positive for each value Xj’ and is deter-

mined from the Lévy measure. A construction of full operator stable random

. . . . d . PP | .
! vectors in a finite dimensional real vector space R is ZtA(Tj )Xj—Yj}, in

A e s _a_ L\ o122

which the vectors Y are non-stochastic centerings, {A(t) = exp(Blog t),t > 0}

is the group of linear transformations figuring in the definition of operator

stability (e.g. Sharpe [9}), and the vectors X are i.i.d. from a probabilirty

measure (a factor of the Lévy measure) on a set of generators of the subgroups

induced by A. The metheds of sections 4 and 5 carrv over, as will now be in-

. .. . . d CoL -
dicated. If X is any i.i.d. sequence in R, and X is independent of I, then

.o -nd N
¥x€R7, n > 1,

K

n ~=1 ® . .
AT | '[—1 (et O0ADE) ) gt
“a

n

(8.1) loge E el(x’L

t

RSO

As usual, the symmetric case is simplest. If we examine Sharpe's Theorem 5,

we discover that the limit of (8.1) is precisely the form taken bv the oper-

ator stable in this case, provided we choose for the distribution of Kl the

probability measure figuring in Sharoe's representaticn of the Lévv measure

as a mixture, this measure being placed on (Sharpe's notation) generators

. - B, . -1 .. . . .
‘ & characterized b: s HEt: S :t>s r=1s ", ¥ s > 0. Arguing as in section )

h 5, we conclude ZT A(T;l)xi converges a.s. in Rd and has the log~characteris-

VY

tic function which is the limit of (8.1).




9. Priority of P. Lévv.

P. Lévy has anticipated the series constructions of one dimensional

stable r.v. with @ < 2. For the case of a positive stable with o < 1,

(=]

up to scale and location, this construction is Z F;l/a
j=1
. . ; ; + .

{Fj, j > 1} being the arrival times of a Poisson process (on R ) having

, with

unit intensity function. Lévy writes the series in the form z Ux’ where
x

(9.1) fUX, x > 0} are independent r.v. and
ooy o Odx i
(9.2) P(U_ = x) = 1+ =1-p(U _=0) .

WL UL

Here is my abstract of the key parts of Lévy's (1935) arguments for the

above case:

[+

. adx -0 r . 3 . P
" e = ! . : g > 1
(9.3) [J 1+ *o < @] > ["Ux' Lx # 0, x> xy 1s finite for X, o,
X, X
0 )
)
“
5
and also,
*0  adx o _(1-a) | »
(9.4) 1 — == x $0l= [E ] U +0)(as x.+ 0) .
o l1-a 70 g X 0 .
0 X x< X X
O ‘\‘
Therefore, for arbitrary o c2 > 0 (defining cg = c? + ¢, and taking .
4 <

independent copies),




x\,ux

NN

y *ﬁ"x*

Dist.
(1 (2) ~ (1) | - (2)
[¢ =
(9.5) 1 ) U+ e, ¥ U, PR SR &
x X
Dist.
=
Lo'x
X
Dist -
= <, ) Ux (= stable),
X
where {Y(k), x > 0} have respective intensities el dx/x1+a, k=1,2,3,

k

and are independent for k = 1,2.

The above arguments do yield a proof of the representation if we
apply them to the independent sub-sums Z{Ux: xe [b
where b;a = log n. This is essentially the argument of Ferguson;Klass

(1972). The particular choice of bn, n > 1 1is one which ensures that

eventually as n + © each sub-sum contains at most one summand, so it

(ad
n
14

really is (almost) as though one could add independent U, oneate
toward x > 0. A quite different justification is to interpret
as a generalized process driven by ''white noise" {Ux, x > 0}.
Lévy's observations are easily overlooked. Ferguson-Klass, Vervaat
(1979), LePage-Woodroofe-Zinn (1979) (in manuscript form), rediscover
the Levy construction as byproducts of the foiiowing independent pursuits
respectively: (F-R) - representing the positive non-Gaussian part cf an
independent increments random function as the sum of its ordered juzps.
(V) -examining a shot-noise associated with the asymptotic behavier of the
solution of a stochastic difference equation as time is increased,

(L-W-2)-studving the limit behavior of the normalized order statistics
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from a distribution attracted to a stable. Resnick (1976) reconciles the

- g a_ &

Ty VTIEETY Y XY
-

Ferguson-Klass construction with the Ito representation, meaning by the

latter Ito's generalization of Lévy's stochastic integral construction

P AP

by a Poisson random measure.

R
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